Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.149
Filtrar
1.
Front Microbiol ; 15: 1330079, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562472

RESUMO

Cellobiose dehydrogenase (CDH) is one of the cellulase auxiliary proteins, which is widely used in the field of biomass degradation. However, how to efficiently and cheaply apply it in industrial production still needs further research. Aspergillus niger C112 is a significant producer of cellulase and has a relatively complete lignocellulose degradation system, but its CDH activity was only 3.92 U. To obtain a recombinant strain of A. niger C112 with high cellulases activity, the CDH from the readily available white-rot fungus Grifola frondose had been heterologously expressed in A. niger C112, under the control of the gpdA promoter. After cultivation in the medium with alkali-pretreated poplar fiber as substrate, the enzyme activity of recombinant CDH reached 36.63 U/L. Compared with the original A. niger C112, the recombinant A. niger transformed with Grifola frondosa CDH showed stronger lignocellulase activity, the activities of cellulases, ß-1, 4-glucosidase and manganese peroxidase increased by 28.57, 35.07 and 121.69%, respectively. The result showed that the expression of the gcdh gene in A. niger C112 could improve the activity of some lignocellulose degrading enzymes. This work provides a theoretical basis for the further application of gcdh gene in improving biomass conversion efficiency.

2.
Appl Microbiol Biotechnol ; 108(1): 302, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639796

RESUMO

Alternative splicing (AS) greatly expands the protein diversity in eukaryotes. Although AS variants have been frequently reported existing in filamentous fungi, it remains unclear whether lignocellulose-degrading enzyme genes in industrially important fungi undergo AS events. In this work, AS events of lignocellulose-degrading enzymes genes in Aspergillus niger under two carbon sources (glucose and wheat straw) were investigated by RNA-Seq. The results showed that a total of 23 out of the 56 lignocellulose-degrading enzyme genes had AS events and intron retention was the main type of these AS events. The AS variant enzymes from the annotated endo-ß-1,4-xylanase F1 gene (xynF1) and the endo-ß-1,4-glucanase D gene (eglD), noted as XYNF1-AS and EGLD-AS, were characterized compared to their normal splicing products XYNF1 and EGLD, respectively. The AS variant XYNF1-AS displayed xylanase activity whereas XYNF1 did not. As for EGLD-AS and EGLD, neither of them showed annotated endo-ß-1,4-glucanase activity. Instead, both showed lytic polysaccharide monooxygenase (LPMO) activity with some differences in catalytic properties. Our work demonstrated that the AS variants in A. niger were good sources for discovering novel lignocellulose-degrading enzymes. KEY POINTS: • AS events were identified in the lignocellulose-degrading enzyme genes of A. niger. • New ß-1,4-xylanase and LPMO derived from AS events were characterized.


Assuntos
Processamento Alternativo , Aspergillus niger , Aspergillus niger/metabolismo , Lignina/metabolismo
3.
Int J Food Microbiol ; 417: 110685, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38579546

RESUMO

Cinnamaldehyde displays strong antifungal activity against fungi such as Aspergillus niger, but its precise molecular mechanisms of antifungal action remain inadequately understood. In this investigation, we applied chemoproteomics and bioinformatic analysis to unveil the target proteins of cinnamaldehyde in Aspergillus niger cells. Additionally, our study encompassed the examination of cinnamaldehyde's effects on cell membranes, mitochondrial malate dehydrogenase activity, and intracellular ATP levels in Aspergillus niger cells. Our findings suggest that malate dehydrogenase could potentially serve as an inhibitory target of cinnamaldehyde in Aspergillus niger cells. By disrupting the activity of malate dehydrogenase, cinnamaldehyde interferes with the mitochondrial tricarboxylic acid (TCA) cycle, leading to a significant decrease in intracellular ATP levels. Following treatment with cinnamaldehyde at a concentration of 1 MIC, the inhibition rate of MDH activity was 74.90 %, accompanied by an 84.5 % decrease in intracellular ATP content. Furthermore, cinnamaldehyde disrupts cell membrane integrity, resulting in the release of cellular contents and subsequent cell demise. This study endeavors to unveil the molecular-level antifungal mechanism of cinnamaldehyde via a chemoproteomics approach, thereby offering valuable insights for further development and utilization of cinnamaldehyde in preventing and mitigating food spoilage.

4.
Fungal Biol ; 128(2): 1705-1713, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38575244

RESUMO

The effects of acoustic waves on growth inhibition of food spoilage fungi (Aspergillus niger, Aspergillus flavus, Aspergillus parasiticus and Botrytis cinerea) on the medium and strawberry surfaces were investigated. Firstly, single-frequency sound waves (250, 500, 1000, 2000, 4000, 8000, 12,000 and 16,000 Hz) were induced on inoculated medium with fungi spores for 24 h and growth diameter of each mold was evaluated during the incubation period. In the second stage, the sound waves with two frequencies of 250 Hz and 16,000 Hz were induced on inoculated strawberries with fungi spores at 5 °C for different times (2, 4, 6, 8 and 10 days). The results from the first stage indicated that the sound waves inhibited the growth of A. niger (20.02%) at 250 Hz and B. cinerea (4/64%) at 4000 Hz on potato dextrose agar (PDA) surface. Also, comparison of the growth diameter of some species of Aspergillus revealed various responses in presence of 250 Hz frequency. In the second stage, applying a frequency of 250 Hz over a period of 10 days proved to be more effective in inhibiting the growth of A. niger and B. cinerea on strawberries inoculated with fungal spores. Consequently, the shelf lives of the strawberries significantly increased to 26 days and 18 days, respectively, under this treatment. Based on the findings, it is concluded that sounding with acoustic waves can be used as a green and cheap technology along with other technologies to improve food safety.


Assuntos
Fragaria , Fragaria/microbiologia , Frutas/microbiologia , Esporos Fúngicos , Aspergillus niger , Som
5.
EFSA J ; 22(4): e8712, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38601871

RESUMO

The food enzyme peroxidase (phenolic donor: hydrogen-peroxide oxidoreductase, EC 1.11.1.7) is produced with the genetically modified Aspergillus niger strain MOX by DSM Food Specialties B.V. A safety evaluation of this food enzyme was made previously, in which EFSA concluded that this food enzyme did not give rise to safety concerns when used in one food manufacturing process. Subsequently, the applicant requested to extend its use to include an additional process. In this assessment, EFSA updated the safety evaluation of this food enzyme when used in a total of two food manufacturing processes: processing of dairy products for the production of modified milk proteins and the production of plant-based analogues of milk and milk products. The dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 0.091 mg TOS/kg body weight (bw) per day in European populations. Using the no observed adverse effect level previously reported (2162 mg TOS/kg bw per day), the Panel derived a margin of exposure (MoE) of at least 23,758. Based on the data provided for the previous evaluation and the revised MoE, the Panel concluded that this food enzyme does not give rise to safety concerns under the revised intended conditions of use.

6.
EFSA J ; 22(4): e8697, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38601865

RESUMO

The food enzyme α-glucosidase (α-d-glucoside glucohydrolase; EC 3.2.1.20) is produced with the non-genetically modified Aspergillus niger strain AE-TGU by Amano Enzyme Inc. A safety evaluation of this food enzyme was made previously, in which EFSA concluded that this food enzyme did not give rise to safety concerns when used in four food manufacturing processes. Subsequently, the applicant requested to extend its use to include three additional processes. In this assessment, EFSA updated the safety evaluation of this food enzyme when used in a total of seven food manufacturing processes. The dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 0.693 mg TOS/kg body weight (bw) per day in European populations. When combined with the no observed adverse effect level previously reported (1062 mg TOS/kg bw per day, the highest dose tested), the Panel derived a margin of exposure of at least 1532. Based on the data provided for the previous evaluation and the revised margin of exposure, the Panel concluded that this food enzyme does not give rise to safety concerns under the revised intended conditions of use.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38639478

RESUMO

Sodium (Na) super ion conductor (NASICON) structure Na3MnTi(PO4)3 (NMTP) is considered a promising cathode for sodium-ion batteries due to its reversible three-electron reaction. However, the inferior electronic conductivity and sluggish reaction kinetics limit its practical applications. Herein, we successfully constructed a three-dimensional cross-linked porous architecture NMTP material (AsN@NMTP/C) by a natural microbe of Aspergillus niger (AsN), and the structure of different NMTP cathodes was optimized by adjusting different transition metal Mn/Ti ratios. Both approaches effectively altered the three-dimensional NMTP structure, not only improving electronic conductivity and controlling Na+ diffusion pathways but also enhancing the electrochemical kinetics of the material. The resultant AsN@NMTP/C-650, sintered at 650 °C, exhibits better electrochemical performance with higher reversible three-electron reactions corresponding to the voltage platforms of Ti4+/3+, Mn3+/2+, and Mn4+/3+ around 2.1, 3.6, and 4.1 V (vs Na+/Na), respectively. The capacity retention rate is up to 89.3% after 1000 cycles at a 2C rate. Moreover, a series of results confirms that the Na3.4Mn1.2Ti0.8(PO4)3 cathode has the most excellent electrochemical performance when the Mn/Ti ratio is 1.2/0.8, with a high capacity of 96.59 mAh g-1 and 97.1% capacity retention after 500 cycles.

8.
Food Chem ; 448: 139136, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38581964

RESUMO

Instant dark tea (IDT), prepared by liquid-state fermentation using Aspergillus niger, is known for its high theabrownins content and lipid-lowering effect. To explore the impact of fungal fermentation on IDT compositions and its pancreatic lipase inhibitory ability (PLIA), untargeted and targeted metabolomic analysis were applied to track the changes of metabolites over a 9-day fermentation period, and correlation analysis was then conducted between metabolites and PLIA of IDT. There were 54 differential metabolites exhibited significant changes from day 3 to day 5 of fermentation. The concentrations of theabrownins and caffeine increased during fermentation, while phenols and free amino acids decreased. The PLIA of IDT samples significantly increased from day 5 to day 9 of fermentation. Theabrownins not only positively correlated with the PLIA but also exhibited a high inhibition rate. These findings provide a theoretical basis to optimize the production of IDT as functional food ingredient.

9.
World J Gastroenterol ; 30(11): 1545-1555, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38617446

RESUMO

BACKGROUND: The gluten-free diet (GFD) has limitations, and there is intense research in the development of adjuvant therapies. AIM: To examine the effects of orally administered Aspergillus niger prolyl endopeptidase protease (AN-PEP) on inadvertent gluten exposure and symptom prevention in adult celiac disease (CeD) patients following their usual GFD. METHODS: This was an exploratory, double-blind, randomized, placebo-controlled trial that enrolled CeD patients on a long-term GFD. After a 4-wk run-in period, patients were randomized to 4 wk of two AN-PEP capsules (GliadinX; AVI Research, LLC, United States) at each of three meals per day or placebo. Outcome endpoints were: (1) Average weekly stool gluten immunogenic peptides (GIP) between the run-in and end of treatments and between AN-PEP and placebo; (2) celiac symptom index (CSI); (3) CeD-specific serology; and (4) quality of life. Stool samples were collected for GIP testing by ELISA every Tuesday and Friday during run-ins and treatments. RESULTS: Forty patients were randomized for the intention-to-treat analysis, and three were excluded from the per-protocol assessment. Overall, 628/640 (98.1%) stool samples were collected. GIP was undetectable (< 0.08 µg/g) in 65.6% of samples, and no differences between treatment arms were detected. Only 0.5% of samples had GIP concentrations sufficiently high (> 0.32 µg/g) to potentially cause mucosal damage. Median GIP concentration in the AN-PEP arm was 44.7% lower than in the run-in period. One-third of patients exhibiting GIP > 0.08 µg/g during run-in had lower or undetectable GIP after AN-PEP treatment. Compared with the run- in period, the proportion of symptomatic patients (CSI > 38) in the AN-PEP arm was significantly lower (P < 0.03). AN-PEP did not result in changes in specific serologies. CONCLUSION: This exploratory study conducted in a real-life setting revealed high adherence to the GFD. The AN-PEP treatment did not significantly reduce the overall GIP stool concentration. However, given the observation of a significantly lower prevalence of patients with severe symptoms in the AN-PEP arm, further clinical research is warranted.


Assuntos
Aspergillus niger , Aspergillus , Doença Celíaca , Adulto , Humanos , Doença Celíaca/diagnóstico , Dieta Livre de Glúten , Glutens , Prolil Oligopeptidases , Qualidade de Vida
10.
Heliyon ; 10(7): e29286, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38617969

RESUMO

The strong demand for biological materials in the food industry places chitosan at the forefront of other biopolymers. The present study aims to evaluate the antifungal properties of chitosan extracted from shrimp shell waste (Parapenaeus longirostris) against post-harvest strawberry (Fragaria × ananassa) spoilage fungi. The physicochemical characteristics (DD, Mw, and solubility) of extracted chitosan were determined. In addition, functional characteristics were studied by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The antifungal effect of chitosan on mycelial growth and spore germination of Aspergillus niger, Botrytis cinerea, Fusarium oxysporum, and Rhizopus stolonifer was evaluated. Yield, degree of deacetylation, molecular weight, and solubility were 21.86%, 83.50%, 180 kDa, and 80.10%, respectively. A degree of deacetylation of 81.27% was calculated from the FTIR spectrum and a crystallinity index of 79.83% was determined from the X-ray diffraction pattern. SEM images of extracted chitosan showed a combination of fibrous and porous structure. At 3% chitosan, mycelial growth inhibition rates of A. niger, B. cinerea, F. oxysporum, and R. stolonifer ranged from 81.37% to 92.70%. At the same chitosan concentration, the percentages of spore germination inhibition of the isolated fungi ranged from 65.47% to 71.48%. The antifungal activity was highly dose-dependent. As a natural polymer, chitosan offers a convincing alternative to synthetic antimicrobials for the post-harvest preservation of strawberries. Its potential lies in its ability to inhibit the growth of spoilage fungi.

11.
Food Microbiol ; 121: 104523, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637085

RESUMO

This study investigated the fungicidal efficiency and mechanism of action of dielectric barrier discharge cold atmosphere plasma (DBD-CAP) in inactivating Aspergillus niger (A. niger) spores. The disinfection efficacy and quality of dried jujube used as the processing application object were also studied. The results indicated that the Weibull + Tail model performed better for spore inactivation curves at different voltages among various treatment times, and the spore cells were reduced by 4.05 log (cfu/mL) in spores suspension at 70 kV after 15 min of treatment. This disinfection impact was further supported by scanning electron microscope (SEM) and transmission electron microscopy (TEM) images, which showed that the integrity of the cell membrane was damaged, and the intracellular content leaked out after DBD-CAP treatment. Elevated levels of reactive oxygen species (ROS) during the treatment increased the relative conductivity of cells, and leakage of nucleic acids and proteins further supported the disinfection impact. Additionally, the growth and toxicity of surviving A. niger spores after treatment were also greatly reduced. When DBD-CAP was applied to disinfecting dried jujube, the spore number exhibited a 2.67 log cfu/g reduction after treatment without significant damage observed onto the quality (P > 0.05).


Assuntos
Aspergillus , Gases em Plasma , Ziziphus , Aspergillus niger , Gases em Plasma/farmacologia , Desinfecção/métodos
12.
Synth Syst Biotechnol ; 9(2): 277-284, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38496318

RESUMO

Aspergillus niger is an efficient cell factory for organic acids production, particularly l-malic acid, through genetic manipulation. However, the traditional method of collecting A. niger spores for inoculation is labor-intensive and resource-consuming. In our study, we used the CRISPR-Cas9 system to replace the promoter of brlA, a key gene in Aspergillus conidiation, with a xylose-inducible promoter xylP in l-malic acid-producing A. niger strain RG0095, generating strain brlAxylP. When induced with xylose in submerged liquid culture, brlAxylP exhibited significant upregulation of conidiation-related genes. This induction allowed us to easily collect an abundance of brlAxylP spores (>7.1 × 106/mL) in liquid xylose medium. Significantly, the submerged conidiation approach preserves the substantial potential of A. niger as a foundational cellular platform for the biosynthesis of organic acids, including but not limited to l-malic acid. In summary, our study offers a simplified submerged conidiation strategy to streamline the preparation stage and reduce labor and material costs for industrial organic acid production using Aspergillus species.

13.
Int Microbiol ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38506948

RESUMO

Ten fungal species were isolated from soil in the Western Desert and Wadi El-Natron in Egypt. All fungal isolates were morphologically recognized down to the species level. Methanol extracts of fungal mycelia and ethyl acetate extracts of culture filtrate from the isolated fungi were evaluated for antimicrobial activity against six pathogenic bacteria and one pathogenic yeast (Candida albicans ATCC20231). Only ethyl acetate extracts of Fusarium circinatum, Aspergillus niger, and Aspergillus terreus culture filtrates showed significant antimicrobial activity against the majority of the investigated pathogens. The culture filtrate extract of Aspergillus niger exhibited notable cytotoxicity towards the breast cancer (MCF-7) cell line, with the lowest detected IC50 recorded at 8 µg/µl. Whereas Fusarium circinatum and Aspergillus terreus had IC50s of 15.91 µg/µl and 18 µg/µl, respectively. A gas chromatography-mass spectroscopy (GC-MS) investigation of A. niger's potent extract revealed 23 compounds with different biological activities. Glycidyleoleate was found to be the main extract component. Aspergillus niger extract was chosen to study its possible cytotoxic mechanism. The extract was found to induce apoptosis and cell cycle arrest at the < 2n stage. Despite a significant increase in caspases 8 and 9, the production levels of tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6) have shown a significant decrease. The high interaction of glycidyleoleate against the studied cytokines' binding receptors was demonstrated via docking studies. In conclusion, the available data revealed that the culture filtrate extract of A. niger possesses promising antimicrobial, cytotoxic, and immunomodulatory properties.

14.
J Fungi (Basel) ; 10(3)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38535181

RESUMO

The control of Aspergillus niger (A. niger) is of great significance for the agricultural economy and food safety. In this study, the antifungal effect and mechanism of iturin A from Bacillus amyloliquefaciens (CGMCC No. 8473) against A. niger (ATCC 16404) were investigated using biochemical analyses and proteomics. Changes in a mycelium treated with iturin A were observed using scanning electron microscopy and transmission electron microscopy, including mycelial twisting and collapse, organelle disintegration, and intracellular vacuolization. The cytomembrane integrity of A. niger was affected by iturin A, as detected by propidium iodide staining. In addition, the generation of excess reactive oxygen species, the hyperpolarization of the mitochondrial membrane potential and malondialdehyde accumulation also indicated that iturin A induced apoptosis in A. niger through the oxidative stress pathway. Proteomics results showed that 310 proteins were differentially expressed in the A. niger mycelium exposed to iturin A, including 159 upregulated proteins and 151 downregulated proteins, which were mainly associated with energy metabolism of A. niger. We propose that iturin A might inhibit the growth of A. niger by disrupting cytomembrane integrity, via oxidative stress, and by interfering with glycolysis/gluconeogenesis and the tricarboxylic acid cycle. Overall, iturin A is a promising antifungal agent that provides a rationale for controlling A. niger contamination in food.

15.
Nat Prod Res ; : 1-8, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38551108

RESUMO

A new naphtho-γ-pyrone dimer, asperosperma A, and a new methyl nicotinate derivative, asperosperma B, with 12 known compounds were isolated from the endophytic fungus Aspergillus niger from the stem of Camellia flavida. Their structure was elucidated by NMR, ECD spectrum, and HR-ESI-MS data. Asperosperma A exhibited a highly cytotoxicity against H460 and 4T1 cancer cells with the IC50 values were 0.37 ± 0.06 and 2.04 ± 0.79 µM, respectively. Moreover, it showed a highly sensitive against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and methicillin-resistant S. aureus.

16.
Int J Food Microbiol ; 416: 110659, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38461732

RESUMO

Fungi are a problem for viticulture as they can lead to deterioration of grapes and mycotoxins production. Despite the widespread use of synthetic fungicides to control fungi, their impact on the agricultural ecosystem and human health demand safer and eco-friendly alternatives. This study aimed to produce, characterize and assess the antifungal activity of carvacrol loaded in nanocapsules of Eudragit® and chia mucilage as strategy for controlling Botrytis cinerea, Aspergillus flavus, Aspergillus carbonarius, and Aspergillus niger. Eudragit® and chia mucilage were suitable wall materials, as both favored the encapsulation of carvacrol into nanometric diameter particles. Fourier Transform Infrared Spectroscopy (FTIR) analysis suggested a successful incorporation of carvacrol into both nanocapsules, which was confirmed by presenting a good encapsulation efficiency and loading capacity. Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) analyses revealed adequate thermal resistance. All fungi were sensible to carvacrol treatments and B. cinerea was the most sensitive compared to the Aspergillus species. Lower concentrations of encapsulated carvacrol than the unencapsulated form were required to inhibit fungi in the in vitro and grape assays. Additionally, lower levels of carvacrol (unencapsulated or encapsulated) were used to inhibit fungal growth and ochratoxin synthesis on undamaged grapes in comparison to those superficially damaged, highlighting the importance of management practices designed to preserve berry integrity during cultivation, storage or commercialization. When sublethal doses of carvacrol were used, the growth of A. niger and A. carbonarius was suppressed by at least 45 %, and ochratoxins were not found. The nanoencapsulation of carvacrol using Eudragit® and chia mucilage has proven to be an alternative to mitigate the problems with fungi and mycotoxins faced by the grape and wine sector.


Assuntos
Cimenos , Micotoxinas , Nanocápsulas , Ocratoxinas , Ácidos Polimetacrílicos , Vitis , Humanos , Vitis/microbiologia , Antifúngicos/metabolismo , Ecossistema , Micotoxinas/análise , Aspergillus niger
17.
J Biosci Bioeng ; 137(5): 329-334, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38461105

RESUMO

Hyperthermostable endoglucanases of glycoside hydrolase family 12 from the archaeon Pyrococcus furiosus (EGPf) catalyze the hydrolysis of ß-1,4-glucosidic linkages in cellulose and ß-glucan structures that contain ß-1,3- and ß-1,4-mixed linkages. In this study, EGPf was heterologously expressed with Aspergillus niger and the recombinant enzyme was characterized. The successful expression of EGPf resulted as N-glycosylated protein in its secretion into the culture medium. The glycosylation of the recombinant EGPf positively impacted the kinetic characterization of EGPf, thereby enhancing its catalytic efficiency. Moreover, glycosylation significantly boosted the thermostability of EGPf, allowing it to retain over 80% of its activity even after exposure to 100 °C for 5 h, with the optimal temperature being above 120 °C. Glycosylation did not affect the pH stability or salt tolerance of EGPf, although the glycosylated compound exhibited a high tolerance to ionic liquids. EGPf displayed the highest specific activity in the presence of 20% (v/v) 1-butyl-3-methylimidazolium chloride ([Bmim]Cl), reaching approximately 2.4 times greater activity than that in the absence of [Bmim]Cl. The specific activity was comparable to that without the ionic liquid even in the presence of 40% (v/v) [Bmim]Cl. Glycosylated EGPf has potential as an enzyme for saccharifying cellulose under high-temperature conditions or with ionic liquid treatment due to its exceptional thermostability and ionic liquid tolerance. These results underscore the potential of N-glycosylation as an effective strategy to further enhance both the thermostability of highly thermostable archaeal enzymes and the hydrolysis of barley cellulose in the presence of [Bmim]Cl.


Assuntos
Celulase , Líquidos Iônicos , Pyrococcus furiosus , Celulase/metabolismo , Pyrococcus furiosus/genética , Pyrococcus furiosus/metabolismo , Glicosilação , Celulose/metabolismo , Estabilidade Enzimática
18.
Environ Res ; 251(Pt 2): 118714, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38518916

RESUMO

Disposal and recycling of heavy metal-enriched biomass is the key to measure the success of phytoremediation. This study employed innovative approach to use Aspergillus niger (A. niger) for the treatment of Cd-contaminated Helianthus annuus L. (sunflower) stalk after phytoremediation. Single-factor results showed that the removal of Cd at an initial pH of 3 was superior to sucrose and inoculation amount. 67.67% of Cd was removed by A. niger leaching system after 11 days based on response surface methodology optimum conditions (sucrose: 76.266 g L-1; inoculation amount: 10%; initial pH: 3), while the concentrations of nitrogen, phosphorus and potassium (N, P and K) of sunflower stalk were unaffected. While physicochemical pretreatment effectively enhanced the bioleaching efficiency, it also resulted in significant loss of P and K elements, thereby reducing the value of biomass for recycling and utilization. Therefore, the direct A. niger leaching method without pretreatment is more advantageous for the safe treatment and recycling of Cd-contaminated sunflower stalks.

19.
Molecules ; 29(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542902

RESUMO

The extraction of rare earth elements (REEs) from phosphogypsum (PG) is of great significance for the effective utilization of rare earth resources and enhancing the resource value of PG waste residues. This study used Aspergillus niger (A. niger) fungal culture filtrate as a leaching agent to investigate the behavior of extracting REEs from PG through direct and indirect contact methods. According to the ICP-MS results, direct leaching at a temperature of 30 °C, shaking speed of 150 rpm, and a solid-liquid ratio of 2:1, achieved an extraction rate of 74% for REEs, with the main elements being yttrium (Y), lanthanum (La), cerium (Ce), and neodymium (Nd). Under the same conditions, the extraction rate of REEs from phosphogypsum using an A. niger culture filtrate was 63.3% higher than that using the simulated organic acid-mixed solution prepared with the main organic acid components in the A. niger leachate. Moreover, the morphological changes observed in A. niger before and after leaching further suggest the direct involvement of A. niger's metabolic process in the extraction of REEs. When compared to using organic acids, A. niger culture filtrate exhibits higher leaching efficiency for extracting REEs from PG. Additionally, using A. niger culture filtrate is a more environmentally friendly method with the potential for industrial-scale applications than using inorganic acids for the leaching of REEs from PG.


Assuntos
Aspergillus niger , Metais Terras Raras , Fósforo , Lantânio , Sulfato de Cálcio
20.
Waste Manag ; 179: 245-261, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38493610

RESUMO

This study explores the extraction of metals from spent mobile phone printed circuit boards (SMPhPCBs) to address environmental and resource depletion concerns. The challenges in metal recovery from SMPhPCBs arise due to their complex composition and high metal content. While previous research has primarily focused on using bio-cyanide, bio-sulfate, and bio-ferric compounds from acidophilic bacteria, the potential of bio-oxalic acid for SMPhPCBs treatment and the alteration of their complex structure has not yet been explored. Additionally, this study suggests evaluating the untapped potential of Aspergillus niger in oxalic acid production through mixed cultures with bacteria, marking a pioneering approach. A unique culture of Bacillus megaterium and A. niger was created, inducing bio-stress by bacterial metabolites, including gluconic acid (2683 mg/l) and live/dead bacterial cells in a medium with glucose deficiency. Results demonstrated reducing sugar consumption and oxalic acid over-production in mixed cultures compared to pure cultures, ranging from 1350 to 4951 mg/l at an initial glucose concentration (IGC) of 10 g/l and 4276 to 7460 mg/l at IGC 20 g/l. This over-production is attributed to proposed fungal signaling mechanisms to bacteria. Metal extraction using organic acids and siderophores at 10 g/l pulp density, 24 h, and 60 °C yielded Mn (100 %), Pt (100 %), Pd (70.7 %), Fe (50.8 %), Co (48.3 %), Al (21.8 %), among others. The final valuable residue containing copper, gold, and silver holds potential for future recycling. The study concludes with XRD and FTIR analyses to assess the bioleaching effect on the bio-leached powder.


Assuntos
Cobre , Resíduo Eletrônico , Ouro , Reciclagem/métodos , Ácido Oxálico/metabolismo , Glucose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...